现代飞机正朝着高性能、轻重量、长寿命、高可靠、高舒适性以及低制造成本的方向发展。搅拌摩擦焊(FSW)作为一种新的焊接技术,已经在航空结构中得到广泛应用。搅拌摩擦焊不仅改善了航空结构,也促进了航空结构完整性检测技术的改进和发展。
01搅拌摩擦焊的工艺特点及应用 搅拌摩擦焊的工艺特点 搅拌摩擦加工主要通过搅拌头的高速旋转和移动实现,搅拌头由轴肩和搅拌针组成。加工过程中,搅拌头高速旋转并缓慢挤入工件的待加工部位,直到轴肩与工件表面紧密接触。搅拌针伸进材料内部进行摩擦和搅拌,其旋转产生的剪切摩擦热将搅拌针周围的金属变软进而热塑化,使加工部位的材料产生塑性流变。 搅拌头高速旋转的同时,沿加工方向与工件相对移动。热塑化的材料由搅拌头的前部向后部转移,并且在搅拌头轴肩的锻造作用下,产生强塑性变形。 与氧炔焊工艺相比,搅拌摩擦焊有许多优点,包括能够消除气体、焊条和电极等许多焊接材料。 搅拌摩擦焊的应用 搅拌摩擦焊具有广泛的应用前景,已在航空铝合金焊接中得到广泛的应用。 2XXX系列铝合金强度高、重量轻,长期以来一直是航空结构的主要材料。如A12195铝一锂合金等新材料,与上一代材料A12219相比,在基础材料方面有了大幅度改进。 在室温和低温条件下,新合金的强度有了极大改进,然而,有时候其焊接性容易出现问题,这也促使人们努力改善工艺,并最终发展并实施了搅拌摩擦焊。 A12195合金能够较好地用于搅拌摩擦焊工艺,克服了利用传统氧炔焊工艺对A12195进行焊接的过程中所生产的难题。 搅拌摩擦焊还可焊接各种铝合金材料,如Al、Cu、Al-Mg、Al-Mg-Si、Al-Zn、Al-Li等高强铝合金,同时也能得到优良的焊接接头。 搅拌摩擦焊在航空结构中的应用主要包括机翼、机身、尾翼、油箱和副油箱等方面。波音公司将搅拌摩擦焊接技术应用于C-17“空中霸王Ⅲ”军用运输机地板的制造中,生产效率是原来铆接的10倍。空中客车公司已经开始将搅拌摩擦焊接应用于大型民用飞机的制造中。 2005年8月26日,据《Speed News》报道,空客已经致力于将搅拌摩擦焊接技术引入到A340飞机制造中,并大规模应用于A350的制造,以及用于A340-500及A340-600的机身纵缝连接,取代传统的铆接技术。空客公司声称,使用搅拌摩擦焊接技术代替铆接技术制造飞机机身,每米焊缝能够减轻重量0.9 kg。 02 搅拌摩擦焊的缺陷类型 搅拌摩擦焊工艺存在着形成有害缺陷的倾向性,缺陷的类型取决于搅拌摩擦焊的参数设置和控制。 1 孔洞 孔洞缺陷的形成主要是由于焊接过程中热输入不够,达到塑化状态的材料不足,造成材料流动不充分,从而导致在焊缝内部形成未完全闭合的现象。 2 飞边 飞边缺陷出现在焊缝表面,通常是由于焊接压力过大而导致较多的塑性材料从轴肩两侧挤出,冷却后形成的一种缺陷。 搅拌摩擦焊接过程是一个焊缝材料体积不变的过程,在实际焊接过程中,搅拌头轴肩、针部、未熔化的母材金属会形成一个“挤压模”,发生塑性变形的材料在“挤压模”中流动。如果焊接压力过大,也就是搅拌头扎入过深,会使“挤压模”体积小于正常焊接时的体积,导致部分材料从轴肩两侧挤出,冷却后形成飞边缺陷。 3 未焊合 未焊合是指在焊缝底部未形成连接或者不完全连接而出现的“裂纹状”缺陷,焊缝压力过小时容易形成根部未焊合。 未焊合的产生实质上是由于搅拌针长度不足而造成的,在搅拌摩擦焊接过程中,如果搅拌针长度合适,两块对接板材之间对接面上的氧化物会在搅拌针旋转和平动过程中被打碎,并在搅拌头后部形成致密的接头,氧化物弥散分布在接头中。 但如果搅拌针长度比正常尺寸短,搅拌针在焊接过程中不能完全搅拌焊缝厚度上的材料,尤其是焊缝下部的材料,加上板材对接面上氧化物的存在,在焊接后接头根部会出现裂纹状的未焊合缺陷。 4 沟槽 沟槽缺陷是搅拌头在对接板表面机械搅动后未形成连接的一种重要缺陷,通常位于前进侧焊缝表面。 沟槽缺陷的产生主要是由于焊接过程中压力过小,导致热输入严重不足,发生塑性变形的材料大量减小;而且材料流动性降低,造成焊缝前进侧的塑化材料从后退侧绕流后不能回填到前进侧,从而在前进侧焊缝表面附近形成空洞。当材料流动能力进一步下降时,形成空洞的范围发生扩展,最终贯通焊缝上表面形成沟槽缺陷。 5 其他缺陷 由于焊接表面氧化膜的存在,焊后在焊缝表面可能形成一层与焊缝内部不同的氧化物;由于对接表面氧化膜在焊接过程中可能未被完全搅拌打碎,从而在焊缝中残留并呈连续分布状,被称为“S线”或“Z线”;在搭接或T形接头中,容易形成一种被称为残余界面线的缺陷,这也属于未焊合缺陷。 03 搅拌摩擦焊的检测方法 焊接结构的检测主要采用目视检测和无损探伤,新的搅拌摩擦焊工艺的出现,对目视检测和无损探伤技术提出了新的要求。 目视检测 渗透检测 超声波检测 包括洛克希德·马丁公司的无损探伤工程师和技术人员对搅拌摩擦焊试件进行了超声波检测,他们使用了传统超声波探头和多探头,以及L形波、剪形波和多角度传感器。研究结果表明,采用这些技术能够探测到材料厚度15%~20%处的未焊合缺陷。 超声波检查的线扫描与截面扫描 搅拌摩擦焊工具的改变会直接影响未焊合缺陷的金相特征,使得缺陷闭合更加紧密,更不容易检测。在改善搅拌摩擦焊工艺的同时,需要研究改进相应的检测方法。通过对相控阵超声波检测技术的改进,能够检测材料厚度25%~30%处的焊接缺陷。相控阵超声波检测技术能够提供多个方向的回波,从而提供关于缺陷的位置信息以及整个厚度上的缺陷信息。 射线检测 X射线检测显示的焊接缺陷 涡流检测 04 结束语 在我国新型航空设备的制造过程中,新的制造工艺和制造技术获得了更大范围的应用。新工艺、新技术的应用可以提高航空部件的结构效率和制造效率,也对航空结构的完整性检测提出了新的挑战。随着我国航空市场的活跃和发展,我们不但要完善制造技术、提高制造水平,还要通过不断创新,发展适应新技术的完整性检测技术,保证航空结构的可靠性。






